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This paper is devoted to the computation of nonlinear dynamic steady-state solutions of

autonomous systems subjected to multi-instabilities and proposes a new nonlinear

method for predicting periodic and quasi-periodic solutions intended for application to

the disc brake squeal phenomenon. Firstly, finite element models of a pad and a disc are

Secondly, a complex eigenvalue analysis is performed showing two unstable modes for a

wide range of friction coefficients, after which a Generalized Constrained Harmonic

Balance Method (GCHBM) is presented. This method can compute nonlinear periodic or

pseudo-periodic responses depending on the number of unstable frequencies. The

numerical results are in good agreement with those of time marching methods.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Disc brake squeal is still an issue for engineers and scientific communities. A great deal of work has been done in
previous decades to understand the mechanism underlying squeal noise and formulate solutions for eradicating it. Kinkaid
et al. [1] and Ouyang et al. [2] have performed extensive reviews of this phenomenon. The first models of disc brake squeal
were built with one degree of freedom (dof) systems in which velocity friction dependency was considered as the squeal
mechanism [3]. Then, Spurr [4] developed a sprag-slip model with a constant friction coefficient and highlighted squeal
conditions. A generalization of this phenomenon was studied with geometrical coupling between bodies [5,6]. The mode
coupling effect due to friction was considered and it was shown that squeal could occur even if the friction coefficient is
constant in relation to sliding velocity. This mechanism is now commonly considered as the first cause of squeal generation
and many works are based on the mode coupling effect for squeal analysis. The continued development of computer
software has led to the use of the finite element method to study large and complex refined systems (see for example Refs.
[7,8]). The primary tool for predicting squeal propensity is complex eigenvalue analysis. Eigenvalues with positive real parts
are related to unstable modes that are responsible for squeal generation, whereas negative real parts are related to stable
modes. Stability and instability areas are then plotted versus system parameters and can provide clues for squeal-free brake
design. Nevertheless, the literature states [9–11] that the computation of dynamic steady-states is increasingly employed
because it leads to improved comprehension of the nonlinear aspects of the system and facilitates robust brake design. A
major drawback of time marching methods is the CPU time consumed for computing steady-state responses. Besides,
alternative methods in the frequency domain have been developed in order to enhance computation of stationary
nonlinear dynamic solutions. Mention can be made of the direct Harmonic Balance Method (HBM), which is the
most popular technique and used by many authors [6,12]. Rather than computing all the transient parts in the time
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domain, Harmonic Balance Methods are designed only to compute the Fourier coefficients of the steady-state solution by
balancing terms between displacements and nonlinear forces. A derivation of Harmonic Balance Methods, called the
Constrained Harmonic Balance Method (CHBM), developed in Ref. [13], is used for autonomous systems in which no
periodic excitation exists.

In this paper, we perform a generalization of the Constrained Harmonic Balance Method (CHBM) by applying it to
autonomous systems subjected to multiple unstable modes. In general, the ratio between two modal frequencies is not an
integer and such frequencies are considered incommensurate. Consequently, such modes involved in the dynamic response
produce pseudo-periodic solutions and HBM based-methods can be designed to deal with multiple frequencies. Since disc
brake squeal is related to autonomous dynamic systems, several specific extensions are presented, leading to a proper
algorithm based on the Harmonic Balance Method. This algorithm can compute the steady-state responses of autonomous
systems with multiple input frequencies linked to unstable modes identified in the stability analysis. This paper is divided
into four parts: firstly, a numerical model is presented with the modeling hypotheses. Secondly, a stability analysis is
performed, highlighting two unstable modes for a given range of parameter. Then, a Generalized Constrained Harmonic
Balance Method (GCHBM) designed for computing nonlinear steady-state responses is presented. The last part is devoted
to the presentation and discussion of the results. A comparison with a time marching method is carried out with an
evaluation of computational performances.

2. Modeling of the brake system

The nonlinear system considered here is a reduced finite element model of a pad and disc and is based on a previous
study by Sinou et al. [14]. Based on a finite element procedure, each component of the system shown in Fig. 1 is reduced by
using a Craig and Bampton strategy [15]. Since highly nonlinear phenomena appear at the disc/pad interface, it is necessary
to conserve physical dofs on both components at this location to ensure, for example, fine management of the contact
status between the pad and the disc. Nine contact nodes are conserved and distributed equally on the frictional pad
surface. Since the disc and pad meshes are compatible at the selected nodes, nine face to face nodes are kept on the
frictional disc surface. Using only nine contact nodes may not provide an accurate description of the complex behavior of
the surfaces, but it seems adequate for our purposes in terms of behavior and size for validating the new algorithm
presented in the following. It should be noted that the nodes remain opposite to each other during the computations and a
relative velocity is imposed at the contact nodes to generate friction forces. Certain generalized dofs are included in the
final reduced model, as keeping only static nodes gives a poor dynamic description of the super-elements. This procedure
adds the first n constrained modes in the reduction basis. We choose n ¼ 50 for both components corresponding to a cut-
off frequency equal to 10 kHz for both super-elements. Finally, an equation of motion is derived:

M €U þ D _U þ KUþ FnlðUÞ ¼ Fout ð1Þ

where M, D, K are the linear mass, damping and stiffness matrices, respectively. FnlðUÞ is related to a vector of nonlinear
forces occurring at the disc/pad interface and Fout is the vector of external forces. €U, _U, U are, respectively, acceleration,
velocity and displacement vectors. The model has nine contact elements and 158 dofs including 54 nonlinear dofs and 104
linear dofs. Contacts are included in the physical systems to add constraints in the equation of motion (1). For convenience,
we choose to consider the penalty method. Springs are added at the disc/pad interface to impose contact conditions.
Measurements of pad compressibility show a nonlinear relationship between the pressure and the displacement. This
effect is included at the interfaces where nonlinear contact stiffnesses are considered in our model. Finally, the
mathematical function used to describe the contact force is

Fcontact;i ¼
kl u1 � u2ð Þ þ knl u1 � u2ð Þ

3 if u1 � u2ð Þ40

0 otherwise

(
ð2Þ
Fig. 1. Split view of the finite element model of the brake system. The red dots represent the contact nodes. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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Table 1
Physical characteristics.

Pad

Young modulus E (GPa) 2

Poisson ratio n 0.1

Density r ðkg m�3Þ 2500

Disc

Young modulus E (GPa) 125

Poisson ratio n 0.3

Density r ðkg m�3Þ 7200
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where u1 and u2 are, respectively, displacements of contact nodes of the pad and disc at contact element i. For the frictional
definition, we consider a simplified Coulomb law with a constant friction coefficient without stick-slip motion. Moreover,
a unidirectional friction effort is considered. Then a friction force Ff ;i located at node i is derived from a contact effort
Fcontact;i with

Ff ;i ¼ mFcontact;i sgnðvr;iÞ ð3Þ

where m is the friction coefficient and vr;i the relative velocity between the disc and pad at node i. The damping matrix D is
built by considering a Rayleigh damping with a and b chosen to obtain modal damping z ¼ 0:1 on non-frictional coupled
modes 900 and 940 Hz. The external force is directly applied on the back pad on four nodes for almost piston like pressure
distribution. Table 1 provides the model parameters. To enhance understanding, it may be noted that the chosen finite
element model (with the contact and damping assumption) does not attempt to capture all effects realistically. This
modeling has been chosen to illustrate a suitable range of behavior and to investigate the efficiency of the proposed
nonlinear method.

3. Static computation and stability analysis

The classical tool for predicting unstable modes in squeal analysis is a linear computation consisting in finding unstable
modes around a linearized static position. The first step considers only the static part of the system with nonlinear terms at
the contact interface:

KU0 þ FnlðU0Þ ¼ Fout ð4Þ

Then, a nonlinear steady sliding equilibrium position U0 is computed and its stability is analyzed by using a perturbation
step procedure:

U ¼ U0 þ U ð5Þ

substituting the previous solution in the equation of motion (1) with a linearization step gives

M €U þ D _U þ ðKþ JnlÞU ¼ 0 ð6Þ

where Jnl is the frictional contact Jacobian matrix derived from linearized expressions of contact efforts. An elementary
Jacobian matrix Jnli

at contact node i takes the form

Jnli
¼

qFnl1;i

qu1;i

����
u0

qFnl1;i

qu2;i

����
u0

qFnl2;i

qu1;i

����
u0

qFnl2;i

qu2;i

����
u0

2
66664

3
77775 ð7Þ

Note that Jnl is asymmetric since the model contains friction forces. The complex eigenvalue computation of (6) then gives
the local stability of the nonlinear system. Eigenvalues take the form

lj ¼ aj þ ioj ð8Þ

where oj is the natural pulsation in rad s�1 of mode j, defined as oj ¼ 2pfj with fj being the natural frequency in Hz and aj

its associated real part. The modal damping can be expressed as zj ¼ �2aj=oj, since as long as the real part remains
negative the associated mode is stable with a positive modal damping zj40. However, when aj becomes positive, the
associated mode has a negative modal damping zjo0 that supplies energy. Then, mode j is considered as unstable and can
generate vibrations at its natural frequency, resulting in squeal noise emission. Fig. 2 shows the evolution of (a) the
frequencies and (b) the real parts. We clearly see the frequency coalescence of non-frictional coupled modes due to friction.
An unstable mode appears at the Hopf bifurcation point where m ¼ 0:26 and the frequency is f2 ¼ 1514 Hz. The real parts
split with one becoming positive while the other remains in the negative area. Frequency coalescence is not perfect due to
unevenly distributed damping between modes [16]. Another unstable mode at f1 ¼ 920 Hz appears for a larger friction
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Fig. 2. Evolution of the frequencies (a) and real parts (b) with the friction coefficient (dashed lines: unstable modes).
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coefficient value (m ¼ 0:28). Frequency coalescence is perfect because both non-frictional coupled modes are equally
damped, as seen previously. Both modes are considered as unstable above this second Hopf bifurcation point. In brief, we
distinguish three main areas in the coalescence pattern of Fig. 2. The first considers a friction coefficient under 0:26 where
no instability occurs. The second is between the two Hopf bifurcation points (i.e. m ranges from 0:26 to 0:28) where only
mode f2 at 1514 Hz is unstable. The third part starts from m ¼ 0:28 until 1, where two modes are unstable at two distinct
frequencies f1 and f2. Note that the growth rate of the real part of the first mode f1 is the highest in the model.

This simple model raises one of the problems of the squeal phenomenon: that of the vibrations when more than one
mode is considered as unstable. To solve this problem, and since the real parts of the unstable modes are not an indicator of
dynamic behavior, temporal analysis is generally employed for the whole system (1). Hence, we are able to obtain a
good representation of nonlinear behavior, providing a great deal of information such as vibration level and frequency
components. However, the major drawback of this approach is the computation time required to obtain the dynamic
steady-state of the nonlinear autonomous system. An alternative method known as CHBM [13] can be used to compute the
dynamic steady-state of autonomous systems with one unstable mode faster than with time marching methods.
An extension of CHBM for dealing with a wide range of autonomous systems with multiple instabilities is proposed in
the following.

4. Generalized Harmonic Balance Method

4.1. Quasi-periodic functions

Responses are no longer periodic when oscillatory systems are subjected to p incommensurable frequencies. The
nonlinear oscillations contain the frequency components of any linear combination of the incommensurable frequency
components

k1o1 þ k2o2 þ � � � þ kjoj þ � � � þ kpop ð9Þ

with ki ¼ �Nh;�Nh þ 1; . . . ;�1;0;1; . . . ;Nh � 1;Nh for i ¼ 1; . . . ; p. Nh defines the order for each fundamental frequency and
p the number of incommensurable frequencies.

Thus the dynamic solution of Eq. (1) can be expressed with a generalized Fourier series such that

UðtÞ �
XNh

k1¼�Nh

� � �
XNh

kp¼�Nh

ak1 ���kp
cosðk1o1 þ � � � þ kpopÞt þ bk1���kp

sinðk1o1 þ � � � þ kpopÞt ð10Þ

ak1 ;...;kp
and bk1 ;...;kp

define the unknown Fourier coefficients of any linear combinations of the incommensurable frequency
components o1;o2; . . . ;op that have been defined previously in (9).

The previous expression can be rewritten in a condensed form

UðtÞ ¼ a0 þ
X
k2Zp

akcosðk �xÞt þ
X
k2Zp

bksin k �xð Þt ð11Þ

where the ð�Þ denotes the dot product, k is the harmonic number vector of each frequency direction and x is the vector of
the p incommensurable frequencies considered in the solution. For convenience, it is wise to deal with a multiple time
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parameter s such that

s ¼ xt ð12Þ

and Eq. (11) is rewritten as

UðsÞ ¼ a0 þ
X
k2Zp

akcosðk � sÞ þ
X
k2Zp

bksinðk � sÞ ð13Þ

where s ¼ ½t1 . . . tp� is a non-dimensional time parameter and refers to the hyper-time concept proposed by Kim and Choi
[17]. Consequently, rather than dealing with a single time domain t 2 Rþ for solution UðtÞ, a multiple periodic time domain
s 2 Rp

þ is considered where each dimension tj corresponds to one incommensurable fundamental frequency identified in
the solution. Therefore (13) is 2p periodic on every hyper-time dimension of s. UðsÞ represents UðtÞ in a p-dimensional time
space where each frequency is independent from the others. For example, Schilder et al. [18] define torus functions which
represent the hyper-time domain in a three-dimensional space for two incommensurate frequencies. An analogy with
numerical image processing can be considered to illustrate the hyper-time concept when applying a filter on an image. It
can be considered as a visual signal depending on both parameters, its two orthogonal directions ðx; yÞ that are similar to
t1 and t2 in a hyper-time domain.

Theoretically, (13) is able to treat a great range of aperiodic dynamic systems where a finite number of p

incommensurable frequencies have been identified. A definition given by [17] for defining Nh harmonics in a multiple
Fourier series is

Xp

j¼1

jkjjrNh ð14Þ

This choice is justified by the fact that the major part of the signal energy is generally included in the very first
harmonics and the very first coupling frequencies.

Eq. (14) will be used in the following for the multiple Fourier series truncation.

4.2. Generalized Harmonic Balance Method

Substituting (11) in the behavior equation (1) and considering Eq. (14) gives

RðtÞ �
X

k2Zn
Nh

½ðK� ðk �xÞ2MÞak þ ððk �xÞDÞbk�cosðk � sÞ

þ
X

k2Zn
Nh

½ðK� ðk �xÞ2MÞbk � ððk �xÞDÞak�sinðk � sÞ þ Fnlðak;bkÞ � Fout ð15Þ

Since sine and cosine are orthogonal functions, they are used as bases and we use a Galerkin procedure for computing
Fourier coefficients: Z 2p

0
� � �

Z 2p

0
Rcosðk1 � t1 þ � � � þ kp � tpÞdt1 . . .dtp ¼ 0 for all kj such

Xp

j¼1

jkjjrNh

Z 2p

0
� � �

Z 2p

0
Rsinðk1 � t1 þ � � � þ kp � tpÞdt1 . . .dtp ¼ 0 for al kj such

Xp

j¼1

jkjjrNh ð16Þ

And the following set of algebraic equations is derived:

K ~z þ ~Fnlð ~zÞ ¼ ~Fout ð17Þ

where K refers to the block diagonal dynamic stiffness matrix:

K ¼

K 0 0 0 0 0

0 K1 0 0 0 0

0 0 & 0 0 0

0 0 0 Ki 0 0

0 0 0 0 & 0

0 0 0 0 0 KNc

2
6666666664

3
7777777775

ð18Þ

with

Ki ¼
�ðk �xÞ2Mþ K ðk �xÞD

�ðk �xÞD �ðk �xÞ2Mþ K

" #
for i 2 ½1;Nc� ð19Þ
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Nc represents the total number of frequency components including all harmonic terms up to Nh of each frequency
direction and all the coupling frequencies chosen by using (14). They must also be positive. Therefore Nc depends on ok

values. A particular case where p ¼ 2 is studied in the following and thus Nc is defined.
~z, ~Fnlð ~zÞ and ~Fout are, respectively, the Fourier coefficient vectors of displacement, nonlinear frictional contact forces and

external forces of the system. They are expressed as

~z ¼ ½a0 a1 b1 � � � aNc
bNc
� ð20Þ

~Fnl ¼ ½
~Fnl;0

~F
a

nl;1
~F

b

nl;1 � � �
~F

a

nl;Nc

~F
b

nl;Nc
� ð21Þ

~Fout ¼ ½
~Fout;0

~F
a

out;1
~F

b

out;1 � � �
~F

a

out;Nc

~F
b

out;Nc
� ð22Þ

Since the behavior of ~Fnl is nonlinear with respect to the displacement vector, Eq. (17) must be solved iteratively by using
Newton–Raphson root-finding algorithms. The analytical computation of ~Fnl in the frequency domain is prohibitive when
defined as a piecewise nonlinear function of displacement. To get round this issue, certain techniques have been developed
for computing nonlinear terms. The Incremental Harmonic Balance Method (IHBM) or High Dimensional Harmonic Balance
Method (HDHBM) [19,20] is applied to nonlinear systems under multiple excitation frequencies. The nonlinear treatment
of Fourier coefficients is performed by using multiple time scales where transformation matrices of equally spaced sub-
time levels are built to compute the nonlinear Fourier coefficients. Cameron [21] proposes the alternating-frequency time
(AFT) method to compute the periodic nonlinear forces in the time domain and then extract their exact Fourier coefficients
~Fnl. As we use a hyper-time domain where the functions are 2p periodic on every orthogonal time dimension, the
generalization of the AFT can be extended to a p-dimensional frequency domain by using a p-dimensional FFT. The
procedure is as follows:

~z�!
IFFTp

UðsÞ�!FnlðUðsÞÞ�!
FFTp

~Fnlð ~zÞ ð23Þ

Once FnlðUðsÞÞ is evaluated, its Fourier coefficients are computed and injected into Eq. (17). In brief, GHBM is written as an
objective function J1 of a dynamic system subjected to multiple frequency inputs:

J1ð ~zÞ ¼ JK ~z þ ~Fnlð ~zÞ � ~FoutJoe1 ð24Þ

where J � J defines the Euclidean norm and e1 is a chosen tolerance.

4.3. Additional constraint equations

This derivation of GHBM can be applied to a wide variety of dynamic systems exhibiting pseudo-periodic responses due
to a finite number of identified exciting frequencies. As seen previously, disc brake squeal is equivalent to an autonomous
system, i.e. the dynamic response implicitly depends on time or, in other words, no external excitation forces excite the
structure. Thus GHBM gives the trivial solution in which the Fourier coefficients would be null except for the static
components, even though a local minimum exists for the dynamic steady-state in the optimization domain [13]. The
existence of both solutions is related to the nature of the dynamic system illustrated by Eq. (1). Under unstable static
conditions, the system may or may not oscillate, depending only on the initial conditions or a perturbation of the system’s
parameters. Hence a set of additional equations has to be included in Eq. (17) to reach the minimum related to the dynamic
solution.

If we consider that the nonlinear response of an autonomous system is driven by p unstable modes:

UðtÞ ¼
Xp

j¼1

Wje
jj t ð25Þ

where Wj is an unstable mode and jj ¼ aj þ ioj its eigenvalue. It can be seen that Wj and jj depend implicitly on UðtÞ since
they are subjected to nonlinear effects thus a change in contact status. Hence, ½C1 . . .Cp�

T should be considered as unstable
modes of a dynamic state with their corresponding complex eigenvalues ½j1 . . .jp�

T, as opposed to unstable modes of the
sliding steady-state solution seen in Section 3. Hence, when looking at Eq. (25), a null real part of jj indicates that the
dynamic response UjðtÞ ¼ Wje

ioj t is stationary through time and oscillates with pulsation oj. Therefore, when all p unstable
modes have a null real part, UjðtÞ becomes a pseudo-periodic motion that is the steady-state response of the autonomous
system considered. Therefore minimizing the real parts of eigenvalues jj (with j 2 ½1; p�) in the optimization process would
lead to the correct computation of the Fourier coefficients linked to the steady-state solution.

The computation of jj is performed by considering an equivalent linear system to Eq. (1) and refers to the equivalent
linear concept proposed by Iwan [22,23] where the nonlinear terms FnlðUðtÞÞ are replaced with a linear approximation
matrix Jnl such that

z ¼ FnlðUðtÞÞ � JnlUðtÞ with z-0 ð26Þ
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Jnl refers to a time independent Jacobian matrix of the nonlinear temporal forces FnlðUðtÞÞ at the dynamic stationary state
UðtÞ.

Since a Fourier transformation is a linear application, Jnl can also be computed in the frequency domain with Fourier
coefficients:

z ¼ ~Fnlð ~zÞ � Jnl ~z with z-0 ð27Þ

A good linear approximation of (1) is obtained when z-0. Then (1) is substituted by

M €U þD _U þ ðKþ JnlUÞ ¼ Fout ð28Þ

By using a perturbation method, the complex eigenvalues j of Eq. (28) are computed and the p real parts linked to the
unstable modes are extracted and gathered in a vector, forming a second objective function J2.

Secondly, since there is no external excitation, the p nonlinear pulsations oj are undefined and thus have to be
considered as p independent unknowns. In brief, a Generalized Constrained Harmonic Balance Method (GCHBM) applicable
to autonomous systems subjected to p incommensurate frequency components is arranged in a set of two objective
functions:

J1ð ~z;XÞ ¼ JKð ~z;XÞ ~z þ ~Fnlð ~z;XÞ � ~FoutJoe1

J2ð ~z;XÞ ¼ JReðjjð ~z;XÞÞJoe2 with j 2 ½1; p�

(
ð29Þ

In more detail J2 takes the form

J2ð ~z;XÞ ¼

JReðj1ð ~z;XÞÞJ
JReðj2ð ~z;XÞÞJ

^

JReðjpð ~z;XÞÞJ

8>>>><
>>>>:

9>>>>=
>>>>;

ð30Þ

with vector X of p unknown frequencies:

X ¼

o1

o2

^

op

8>>>><
>>>>:

9>>>>=
>>>>;

ð31Þ

Computation is performed when /J1; J2S are, respectively, below chosen tolerances /e1; e2S. Such a set of objective
functions has ðnð1þ 2NcÞ þ pÞ equations to be solved with ðnð1þ 2NcÞ þ pÞ unknowns and is therefore well-determined. n is
the dimension of the dynamic system, Nc is the total number of frequency combinations and p is the number of unstable
modes used in the solution.

4.4. Reduction step

The computation time of any nonlinear system is related to the number of unknowns so any reduction in the size of the
system would increase performance. The authors of [24] propose a reduction method for nonlinear systems studied in the
frequency domain without loss of accuracy. After reorganizing linear and nonlinear dofs ~znl and ~zln, the system described
by Eq. (17) can be expressed as follows:

Kln;ln Kln;nl

Knl;ln Knl;nl

" #
~zln

~znl

( )
þ

0
~Fnl

( )
¼

~Fout;ln

~Fout;nl

( )
ð32Þ

and Eq. (17) is rewritten in term of nonlinear components such that

Keq ~znl þ
~Fnlð ~znlÞ ¼

~Feq ð33Þ

with

Keq ¼ Knl;nl �Knl;lnðKln;lnÞ
�1Kln;nl ð34Þ

and

~Feq ¼
~Fout;nl �Knl;lnðKln;lnÞ

�1 ~Fout;ln ð35Þ

This step reduces the number of equations from ðnð2Nc þ 1Þ þ pÞ to ðnnlð2Nc þ 1Þ þ pÞwhere n and nnl are the numbers of
total dofs and nonlinear dofs, respectively. Thus this reduction step is very efficient for large systems with only few
nonlinear dofs. When ~znl is known, ~zln is easily obtained by

~zln ¼ K�1
ln;lnð

~Fout;ln �Kln;nl ~znlÞ ð36Þ
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Hence, a reduced form of Eq. (29) is

J1ð ~znl;XÞ ¼ JKeqð ~znl;XÞ ~znl þ
~Fnlð ~znl;XÞ � ~FeqJoe1

J2ð ~znl;XÞ ¼ JReðjjð ~znl;XÞÞJoe2 with j 2 ½1;p�

(
ð37Þ

Computation is done when /J1; J2S are, respectively, below chosen tolerances /e1; e2S. Fig. 3 represents the general
algorithm procedure of a GCHBM.

4.5. GCHBM initialization

Regarding time marching methods, optimization processes need a starting point to find a solution in the optimization
domain. A bad choice of initial conditions is synonymous with slow convergence. As explained in [13] and inspired by the
concept of complex nonlinear modal analysis (CNLMA) developed by Sinou et al. [25], Fourier coefficients of the first
harmonic are initialized by the unstable mode vectors found in the stability analysis. This is based on the assumption that
dynamic behavior is mainly driven by unstable modes. Thus for every first harmonic (in Fourier basis) of every unstable
mode, the initial prediction takes the form

~z1;j ¼ ZðWj þWjÞ with j 2 ½1; p� ð38Þ

where Wj defines the jth nonlinear unstable mode shape, Wj is its conjugate and Z is an arbitrarily chosen coefficient with a
range from 20 to 60 to ensure convergence of the optimization problem. As can be observed, the pulsations are a priori

unknown while a good initial estimate considers those found in the stability analysis.

5. Application to squeal vibration

5.1. Brake model with two unstable modes

As indicated previously in Section 3, two modes are found to be unstable, with the potential to vibrate. Thus, J2 and X
are two-dimensional and take the following form:

J2ð ~znl;X1�2Þ ¼
JReðj1ð ~znl;X1�2ÞÞJ

JReðj2ð ~znl;X1�2ÞÞJ

( )
ð39Þ

X1�2 ¼
o1

o2

( )
ð40Þ
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Table 2
Parameter values.

a ðsÞ 1:6e�7

b ðs�1Þ 6:1

kl ðN m�1Þ 1:8e5

knl ðN m�3Þ 5e9

Fout ðNÞ 7000

Table 3
Parameter table.

Case Friction coefficient f1 ðHzÞ f2 ðHzÞ

1 m ¼ 0:29 896:9 1497:1

2 m ¼ 0:35 903:8 1495:4

3 m ¼ 0:4 898:3 –
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A geometric interpretation of k 2 Z2 (i.e. p ¼ 2 and Nh ¼ 3) is given in Fig. 4. It can be seen that the harmonic
combinations are constrained by Eq. (14) and that the resulting frequencies are positive.

According to Fig. 4, Nc ¼ 12 and as seen in Section 2, the nonlinear terms are equal to nnl ¼ 54. Thus the whole equation
set has 1352 unknowns and equations. It should be noted that for the case where k1 ¼ k2 ¼ 0 stands for the static Fourier
coefficients and is not included in Nc .

5.2. Nonlinear steady-state

In this section, the results of the GCHBM procedure and comparisons with temporal results from Ref. [14] are presented
and discussed. Steady-state solutions for three different friction coefficients are studied. The efficiency of GCHBM is
underlined as are the optimization process parameters. Finally, results relating to the evolution of frequencies and
amplitude level as a function of friction coefficient are discussed. Table 2 groups the model parameter values and Table 3
gathers frequency values for three different friction coefficients.

5.2.1. Limit cycles with two unstable modes

Fig. 5 displays pseudo-periodic responses for a disc and a pad interface node for both methods at m ¼ 0:29 (with Nh ¼ 3).
Since the responses are pseudo-periodic due to both incommensurate frequencies, the limit cycles are no longer closed.

They are delimited by a maximum amplitude shape and remain inside it. Good correlation between time integration and
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GCHBM is found and the relative errors on displacements and velocities are less than 5%. Limit cycle evolution is
complicated due to both unstable modes; consequently, the power spectrum density (PSD) is plotted in Fig. 6 to facilitate
understanding. Since both modes participate in the nonlinear dynamic solution, the spectrum includes both fundamental
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frequencies, f1 ¼ 897 Hz and f2 ¼ 1497 Hz, as well as their respective harmonics 2f1, 3f1, 2f2 and 3f2. Note that frequencies
f1 and f2 of the final response are slightly different from those of the stability analysis, therefore taking them as unknowns
in a GCHBM procedure is a reasonable hypothesis. Moreover, modulation frequencies are also found in the spectrum due to
nonlinearities. The combinations are 2f1 � f2, f2 � f1, 2f2 � f1, f1 þ f2, 2f1 þ f2, f1 þ 2f2, as indicated by Eq. (14) when Nh ¼ 3.
These couplings have a strong effect on dynamic behavior and an example is shown in Fig. 6(b), where the amplitude level
at f2 � f1 is almost 100 times higher than the amplitude level of fundamental frequency f2. Since the number of harmonics
Nh retained is equal to 3, several frequencies were not taken into account in GCHBM, whereas the time integration shows
these frequencies. For example, there is a peak at 2f2 � 2f1 (Fig. 6(a,b)) for the time integration but no amplitude for
GCHBM.

Nonlinear behavior can be affected by all the frequency combinations if their contributions are non-negligible. For
Fig. 6(a) which corresponds to the pad, the contribution of f2 � f1 seems to be small, but for Fig. 6(b) which is a disc node,
its power is higher than the fundamental frequency level f2. What is more, in Fig. 5(c,d) differences can be clearly
distinguished on the limit cycle patterns despite the fact that the maximum amplitude shape remains the same. As an
illustration, Fig. 7 shows the responses of the interface nodes of a disc and pad at m ¼ 0:35 (with Nh ¼ 3). The limit cycle
shapes are still complicated and the same frequency combination can be observed in PSD in Fig. 8. Nevertheless, the third
harmonic of f2 appears to be absent from the frequency spectrum for the pad node (Fig. 8(a)) while the fifth harmonic
of f1 is dominant in the frequency range ½350025000�Hz. Since Nh ¼ 3, 5f1 is taken into account only by the time
integration. In Fig. 8(b), 3f2 is still absent but here 5f1 no longer responds. As for m ¼ 0:29, a frequency peak at 2f2 � 2f1 is
taken into account only by time integration. Despite a higher friction coefficient, the amplitude of the limit cycles is lower
in comparison to case 1 at m ¼ 0:29. For both cases m ¼ 0:29 and 0:35, the disc nodes show a very low response of
fundamental frequency f2 and its harmonics compared to the first mode f1. However, in some cases coupling frequencies
have the most preponderant contribution in dynamic responses, such as f2 � f1 in Fig. 6(b). Therefore keeping f2 in the
computation is essential.

5.2.2. Choice and influence of the harmonic number

A common problem when dealing with harmonic balance methods is making the right choice of harmonic numbers to
compute a solution. An excessively low number could lead to a poor estimation of the response, especially if strong
nonlinearities exist, but choosing too many harmonics leads to unnecessarily intensive computation. Consequently, a
compromise must be found. By way of example, we try to compute a nonlinear solution with the following parameters,
ðNh ¼ 2;m ¼ 0:29Þ under the same initial conditions as for ðNh ¼ 3;m ¼ 0:29Þ. It should be recalled that these initial
conditions are derived from Section 4.5.

In Fig. 9, the GCHBM with Nh ¼ 2 are wrong, compared to those of the time integration, as seen in Fig. 10 where the harmonic
components of GCHBM do not fit with those from the temporal integration. When looking at the convergence chart in Fig. 11, it
can be seen that e1 has not reached a minimum (Fig. 11(a)) and the real parts a1 and a2 that describe e2 (Fig. 11(b)) are not
minimized since a1 � �6:1 and a2 � 2. The solver stopped because it could not find any downward direction.

One of the reasons for this could be the fact that the restricted number of harmonics leads to an over-large
approximation of displacements and thus of the nonlinear forces used for the dynamic Jacobian computation, see Eq. (27).
Therefore the criterion e2 derived from the real parts associated with the complex eigenvalues applied for Eq. (30) would
not be satisfied.
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Regarding validation, Fig. 12 displays the density of the power spectra when using Nh ¼ 5 for m ¼ 0:29. As expected,
higher harmonics such as 4f1, 5f1, 4f2, 5f2, 2f2 � 2f1, 3f1 � f2 and 2f1 þ 2f2 are found in the spectrum and the GCHBM pattern
is very similar to the temporal pattern. However, the amplitude of these high frequency harmonics is negligible when
compared to those found with Nh ¼ 3 and they do not appear to affect the stationary response.

Now we consider Nh ¼ 2 in a sequential continuation where we re-use the previous results as initial conditions for a
solution computed with a new set of parameters. In practice, the computation is performed from /Nh ¼ 3;m ¼ 0:345S to
/Nh ¼ 2;m ¼ 0:35S. The advantage of this procedure is that we can determine whether, under better initial conditions,
GCHBM is able to provide good results with fewer harmonics. The response is no, as indicated by Fig. 13, where the limit
cycles computed by GCHBM are still far from the temporal solution. In Fig. 14 it can be seen that the harmonic components
f1 and 2f1 merge with those of the temporal integration, but f2, 2f2 are almost absent from the spectrum. Combination
frequencies such as f2 � f1 or f2 þ f1 are also badly computed, meaning that using Nh ¼ 2 in such cases is unsatisfactory.
Therefore Nh ¼ 3 seems to be a good compromise between accuracy and computation time and could be used in the
following.

5.2.3. Limit cycles with one unstable mode

An interesting phenomenon appears when computing limit cycles for m ¼ 0:4. Fig. 15 shows the results of time
integration and GCHBM procedure. To enhance understanding, Fig. 15(a) and (b) are for two distinct pad nodes and
Fig. 15(c) and (d) are for two distinct disc nodes.

Although the stability analysis shows the presence of two unstable modes for this set of parameters, the dynamic
behavior of the system is only driven by the first unstable mode f1 ¼ 898:3 Hz and the second unstable mode f2 is totally
absent in the spectrum of Fig. 16. Therefore only the fundamental frequency f1 and its harmonics 2f1 and 3f1 are found and
coupling frequencies such as f1 þ f2, f2 � f1 and so on are no longer available. The inner loops in Fig. 15(a) are due to the
harmonics 2f1 and 3f1 exacerbated by nonlinearities. Obviously, since Nh ¼ 3 was chosen for the Fourier series, harmonics
higher than 3f1 are not computed and they are found to be absent from the GCHBM spectrum. Nevertheless, these
harmonics are not preponderant in the solution when comparing their power density to the three first harmonics.

As seen previously, the GCHBM results are close to the time integration results with a relative error on displacement less
than 1%. Note that GCHBM functions like a CHBM when only one unstable mode is considered in the final solution.

5.3. Parameter evolution according to m

In this section we present the evolution of limit cycles with associated unstable frequencies and the total amplitude
energy of the system with m varying from m ¼ 0:29 up to 0:60 which is a part of the unstable domain. Fig. 17 shows a set of
limit cycles computed at different friction coefficient values. As seen previously, both modes are involved in the dynamic
for a low friction coefficient with a complex limit cycle shape. When m is above 0:36, we found closed limit cycles,
indicating that only one mode remains in the dynamic.

To study the squeal propensity of each mode, an index was defined and the following were chosen from the literature:

aj ¼ 100 � 2
ReðljÞ

ImðljÞ
for the jth mode ð41Þ
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The ratio a1=a2 versus the friction coefficient m is displayed in Fig. 18. It is interesting to compare how the ratio behaves
with m and its effects on the dynamic steady-state. When looking at the first part of the curve, i.e. for 0:29omo0:36, a very
steep slope can be seen, but from m ¼ 0:36 ratio a1=a2 remains almost constant with respect to m. When looking at Fig. 17 it
can be seen that the transition between a pseudo-periodic response to a periodic response also occurs at around m ¼ 0:36.
It seems as if there is an analogy between the transition of the index ratios of both modes and their availability or non-
availability in the dynamic response. The ratio increases until the first mode m1 replaces the second mode m2 and remains
constant when m1 is the only mode providing a response.

As can be seen, a squeal propensity index higher by 10-fold is found for the 1st mode compared to the 2nd mode at
m ¼ 0:4. The energy of the first mode appears to replace the second mode even if the latter is present in the stability
analysis.

To facilitate understanding, Fig. 19(a) shows frequencies for m varying from m ¼ 0:29 to 0:36 where both modes are
unstable. The frequencies are friction coefficient dependent, and while f2 decreases as m increases, the slope of f1 curve is
positive in this range. Nevertheless, f2 disappears from the dynamic steady-state at around m ¼ 0:36 as can be seen in
Fig. 19(b) where only the first unstable mode f1 is present in the limit cycle in the range between m ¼ 0:36 and 0:68.
Frequency f1 follows a negative slope regarding m, it decreases from 905 Hz at m ¼ 0:36 to 860 Hz at m ¼ 0:68.

Fig. 19(c) shows the total amplitude energy of the whole system for m ranging from 0:29 to 0:68. In the first part, until
m ¼ 0:36 where both modes are unstable, the energy decreases and a minimum is found when f2 vanishes from the
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solution. From m ¼ 0:36, the energy of the system increases with a quadratic form with respect to m. The first unstable
mode f1 seems to act as energy pulsating in the active range of the second mode f2 before it disappears from the solution.
As described above, the friction coefficient not only modifies the amplitude of the dynamic behavior of autonomous
systems, but it also influences their frequencies. This dependency between friction and frequency could have an effect on
neighboring modes by exciting them. Consequently, they may participate in the final dynamic solution.

5.4. Convergence and computation time

Convergence problems stem from many sources when attempting optimization. The main problems come from initial
estimates made far from the target solution. Here convergence is achieved with the GCHBM algorithm because a set of
conditions considered as optimized is used. For each iteration, Fig. 20 displays the norm of the real parts (a), both optimized
frequencies (b), and the norm of the residue (c). More precisely, frequency plot (b) corresponds to the difference between
the optimized frequencies and those obtained by a stability analysis.

The total number of iterations is Niter ¼ 35. The real parts both tend to zero at the end of the optimization process, as
does the norm of the residue. A net difference between the initial frequencies obtained by the stability analysis and those at
the end of optimization is shown. For the first mode f1, the frequency evolution is about 20 Hz. GCHBM enhances
computation time, which falls to about 3 h, 20 min, whereas time integration needs about 10 h to obtain the dynamic
steady-state. A better convergence result could be obtained by trying a new initial starting point or by changing the
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tolerance values e1 and e2, since Fig. 20 clearly shows that both real parts and frequencies as well as the norm of the residue
have almost converged at iteration 25. This would significantly reduce total computation time. Here we have chosen
e1 ¼ e2 ¼ 0:01. It should be noted that these convergence results stem from the very first computation. When using another
set of parameters, such as a change of friction coefficient, the results computed previously are injected as an initial starting
point and computation is performed. Hence the number of iterations and thus computation time are considerably reduced,
since only a few iterations are required to converge to the final solution. In general, a new steady-state solution can be
computed in less than 20 min.
6. Conclusion

In this paper we develop a new method called GCHBM able to compute the dynamic steady-states of autonomous
systems such as disc brake squeal in the case where stability analysis reveals large numbers of unstable modes. The
computed solutions are either pseudo-periodic if at least two unstable modes generate vibrations, or periodic if dynamic
behavior is driven by only one unstable mode. When at least two unstable modes vibrate, the stationary dynamic responses
become pseudo-periodic and the cycle plotted in the displacement–velocity coordinates is no longer closed. Particular care
regarding the total harmonic number must be considered to avoid missing important coupling frequencies or even the non-
convergence of the solver. Finally, GCHBM is well suited for brake squeal analysis when a large number of unstable modes
are taken into account. It could help brake designers by computing the amplitudes of limit cycles for sets of parameters
faster than with time integration. Frequency responses are analyzed and modal behavior is better understood. For example,
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it detects the absence of the second mode f2 at m ¼ 0:36 although the stability analysis predicts two unstable modes.
Dynamic behavior can be computed for numerous parameter sets and an optimal area can be found easily. For example, the
lowest dynamic response of our model occurs at m ¼ 0:36 in the unstable area, the point at which the second mode f2

disappears from the dynamic response.
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